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Objective of the talk
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Why didn’t we detect kilonova counterpart of NSBH 
candidates in O4?

SCAN ME!

« Limits on the Ejecta Mass During the Search for 
Kilonovae Associated with Neutron Star-Black Hole 

Mergers: A case study of S230518h, GW230529, 
S230627c and the Low-Significance Candidate 

S240422ed », Pillas et al, 2025, arXiv:2503.15422



DATA

GW Modeling

BNS, NSBH collisions 
Core collapse

Global astrophysical 
Modeling

Nuclear Physics  
Dense Matter

Bulla, 
Pellouin…

Tews…

Dietrich…

HERE I AM (AND SO IS MY TALK)

Chemical evolution 
R-process

Barnes, 
Kasen…
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Compact binary coalescence system with neutron stars: multi-messenger event

(Fernandez and Metzger, 2016)

Only example so far: GW170817 - GRB 170817A

Part I. Introduction

4



3

• Kilonova (KN) - Optical-NIR counterpart, 
witness to the nucleosynthesis of  heavy 
elements during the merger 

• KN brings information about: 
• Sky location of the source 
• Merger environment … 

• GW170817 - GRB 170817A

Part I. Introduction
Gravitational Wave:  
T0 = 17/08/17 12h41 UTC 
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• Kilonova (KN) - Optical-NIR counterpart, 
witness to the nucleosynthesis of  heavy 
elements during the merger 
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• GW170817 - GRB 170817A
(Ascenzi et al, 2021)
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elements during the merger 
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AT2017gfo

(Ascenzi et al, 2021)
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Ejecta = +

Neutron star - Black hole (NSBH) merger can also produce KN signature, depending on:  
• Small mass ratio (m1/m2) 
• High black hole spin 
• NS Equation of State 
• … 

(Villar et al, 2017)

BH 2ϕ

θobs

Disc wind 
Ejecta

Tidal Tail 
Dynamical 

Ejecta

Part I. Introduction
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Neutron star - Black hole (NSBH) merger can also produce KN signature, depending on:  
• Small mass ratio (m1/m2) 
• High black hole spin 
• NS Equation of State 
• … 

(Villar et al, 2017)

BH 2ϕ

θobs

Disc wind 
Ejecta

Tidal Tail 
Dynamical 

Ejecta

Properties imprinted 
in KN light curves

In this work:

Part I. Introduction

10We define a kilonova scenario by:  ,  , mdyn mwind θ
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• O4 has started in May 2023  
• 1 confirmed NSBH: GW230529 
• 2 NSBH candidates: S230518h, S230627c 
• 1 low-significance NSBH candidate:  S240422ed 
• Massive followup from the optical community but no discovery of a clear KN counterpart

Up to 24/07/24

Even a non-detection can help constrain 
source properties  (ejecta, viewing angle)

Part I. Introduction
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In this work:  
1) Take a critical look at observation strategies from the optical community 
2) Given the non-observation of a KN, set constraints on source ejecta and viewing 

angle properties of the 4 NSBH candidates

Part I. Introduction
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- At least one observation should be done at the time of brightness peak 

- Compare time of optical observations with the predicted peak time from simulated KN light 

curves for numerous filters

In this work: 
1) Take a critical look at observation strategies from the optical community 
2) Given the non-observation of a KN, set constraints on source ejecta and viewing 

angle properties of the 4 NSBH candidates:

Part II. Observation strategy
In this work:  

1) Take a critical look at observation strategies from the optical community 
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• Compare time of optical observations with the predicted peak time from simulated KN light curves

Part II. Observation strategy
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Part II. Observation strategy

KNC 
observations
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S230518h: Observations 
in TESS-band covered the 
KN peak time of ~100% of 
the population. 

S240422ed: Observations 
consistent with the peak time 
of 82% of KN population in r-
band.

r-band

Part II. Observation strategy
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KN peak time of ~100% of 
the population. 
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S240422ed: Observations 
consistent with the peak time 
of 82% of KN population in r-
band.

r-band

GW230529 & S230627c: Less 
observed - the «  later time  »  
strategy is not always realized 
while prompt strategy has been 
well demonstrated

R-band

r-band

For J-band: advocate 
a more «  flexible  » 
approach for near and 
infrared for which the 
peak time of the KN is 
less obvious

Part II. Observation strategy

S230518h: Observations 
in TESS-band covered the 
KN peak time of ~100% of 
the population. 

In general: Necessity to image the first moment but also the importance of imaging 1 day post-merger
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In this work: 
1) Take a critical look at observation strategies from the optical community 
2) Given the non-observation of a KN, set constraints on source ejecta and viewing 

angle properties 

In this work:  

2) Given the non-observation of a KN, set constraints on source ejecta and viewing 
angle properties of the 4 NSBH candidates:

 

- Start from GW public information (GraceDB) to estimate a range of consistent ejected masses ,   & select a 

corresponding set of simulated KN light curves 

- Compare the magnitude of the light curves ( ) to the upper limit from optical observations ( ) 

- If  > : KN light curve incompatible with observation

mdyn mwind

MKN Mobs

MKN Mobs

Part III. Constraints of KN from O4 NSBH candidates
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Part III. Constraints of KN from O4 NSBH candidates
• PyCBC Live method to compute the : deterministic mapping between the source-frame chirp mass 

and its source classification probabilities
pastro

Method from Villa-Ortega, 2022 

Source classification (rescaled to 1)

100 101

m1,src

100

101

m
2
,s
rc

BNS

NSBH

BBH

ℳ
src = 1.91 M

⊙

GW230529

 = 0.329pBNS

 = 0.671pNSBH
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• Compute a range of consistent ejected masses: ,   
select a corresponding set simulated of KN light curves

mdyn mwind

17

Mrem
model

Mb
NS

= [Max(α
1 − 2CNS

η1/2
− βR̂ISCO

CNS

η
+ γ,0)]δ

Mdyn

Mb
NS

= a1Qn1
1 − 2CNS

CNS
− a2Qn2

RISCO

MBH
+ a4

Mmodel
rem = Mdyn + ζ × (Mdisk − Mdyn)

(Foucart et al, 2018, 
Kruger & Foucart, 2020)

Dyn

Wind

(M⊙)

(M⊙)

Part III. Constraints of KN from O4 NSBH candidates

a)  equation of stateSLy
χ1z = − 0.3 χ1z = 0.0 χ1z = + 0.3 χ1z = + 0.8
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Example for SLy EOS & 
χBH = 0.8
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• Compute a range of consistent ejected masses: ,   select a corresponding set simulated of KN 
light curves

mdyn mwind

18

• Results (we take the broader upper limit between EoS and spins) 

• S230518h:  &   

• GW230529:   

• S230627c:   

• S240422ed: given the low significance, select all the synthetic light curves of the grid

mdyn < 0.08 M⊙ mwind < 0.04 M⊙

mdyn, mwind ≤ 0.01 M⊙

mdyn, mwind ≤ 0.01 M⊙

Part III. Constraints of KN from O4 NSBH candidates

20



• Compare the magnitude of the light curve ( ) with the one of optical observations ( )MKN Mobs

• Each optical telescope field has a specific field of view, filter, limiting magnitude and epoch 

• Report these fields on the GW HEALPix skymap 

• Extract pixels of the skymap in each field and their associated distances

S240422ed (between 0 and 1 day)

Part III. Constraints of KN from O4 NSBH candidates

21

S230627c (between 0 and 1 day)

All filters!
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Incompatible

• Compute the apparent  of the synthetic KN light curves for each pixel and at the corresponding distance 

• Compare the brightness of the simulated KN with the upper limits of the fields that contain the pixel at the epoch 
of the field 

• If  > : KN light curve incompatible with observation

MKN

MKN Mobs

S240422ed

Part III. Constraints of KN from O4 NSBH candidates

22

S230627c

Compatible



• Compute a scale reflecting the possibility of the « presence » of a KN: 

Synthetic KN from 
Bulla-Anand

Telescope observation

FilterTime range of the observations that occurred 
at time [0,1[, [1,2[ or [2,6[ dayst ∈ Δt =

Total number of synthetic KNe from the grid 
considered for each event

SKN,Δt,ipix =
1

ntot,KN
×

ntot,KN

∑
k=1

{1 if MKN( fil, θ, mdyn, mwind, t) > Mobs( fil, t, ipix)
0 otherwise

• If  > : KN light curve incompatible with observationMKN Mobs

Part III. Constraints of KN from O4 NSBH candidates

23



S240422ed (between 0 and 1 day)

High prob of 
absence of KN

Low prob of 
absence of KN

S240422ed: 178 deg² within the 90% credible region (72% of the skymap), for t in [2,6] 
days, with a  > 0.7: probable absence of a KN in the observations1 − SKN,Δt,ipix

• If  > : KN light curve incompatible with observationMKN Mobs

Part III. Constraints of KN from O4 NSBH candidates

1 − SKN,Δt,ipix

High prob of 
absence of KN

Low prob of 
absence of KN

S230627c (between 0 and 1 day)

24
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Part III. Constraints of KN from O4 NSBH candidates

25

Focus on KNC observations of S240422ed: 
Scenarii ruled out by KNC observations: ~5% of the 
KN population 

• Configurations with viewing angle  

• Configurations with  

• Configurations with  

→ Observations deep enough to constraint ejecta and 
viewing angle properties!

θ < 36∘

mej,dyn ≥ 0.02 M⊙

mej,dyn ≥ 0.01 M⊙



• Associate a deterministic probability to each KN scenario ( ) of being ruled out θ, mdyn, mwind

1 − Pθ,mdyn,mwind,Δt = P̄θ,mdyn,mwind,Δt = ∑
ipix

P(GW ∣ ipix) × {1 if MKN( fil, θ, mdyn, mwind, t) < Mobs( filt, t, ipix)
0 otherwise

• If  > : KN light curve incompatible with observationMKN Mobs

Part III. Constraints of KN from O4 NSBH candidates
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• S230518h: it has not been possible to observe KN emitted from an on-axis collision up to a viewing angle of , 
assuming a minimum confidence of 8% for the presence of the source in this region 

• GW230529: we cannot exclude the presence of a KN in the observations 

• S230627c: we cannot exclude the presence of a KN in the observations  

• S240422ed: observations ruled out the presence of a KN (with or without GWs) 

θ = 25∘

Part IV. Conclusion
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• S240422ed: observations ruled out the presence of a KN (with or without GWs) 

• A null ejecta is consistent with  → Inconsistent with the  from the alert: pBNS ≤ 0.3 pastro

Part IV. Conclusion

26

What could be the reason? 

• KN-model dependant   

• BNS instead of NSBH model? 

• Candidate not of astrophysical origin



THANK YOU! QUESTIONS?



Choice of KN model

7

Anand 2021-Bulla 2019 model: light curves computed with POSSIS  

• 3D Monte Carlo code for modelling radiation transport in KN 

• Does not solve the radiative transfer equation analytically but rather numerically with Monte Carlo photons 
representing radiation and propagating through the expanding ejecta→ speed up the computation 

• Key ingredients: input energy (from radioactive decay of r-process nuclei) and opacity (controlling the 
diffusion of Monte Carlo photons)

Creating photons

• Inputs:  
• Frequency 
• Energy

Propagating photons

• Optical depth:  

• Probability of interacting 
with matter: 

τ = ∫ κρdr

P = 1 − e−τ

Collecting photons

• Create observables: 
• Spectra 
• Light curves …

(Bulla, 2019 & Bulla, 2023)
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~  « How much 
studied » scale



Modeling Kilonova from Binary Neutron Star merger

4

(Metzger, 2019)
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