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astrophysical

TRANSIENTS:

anything whose brightness changes on
human-observable timescales
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astrophysical

TRANSIENTS:

often extreme phenomena that can test
fundamental physics at a higher energy scale
than we could ever see on Earth




Neutron Star Merger (artist's interpretation)
https:/svs.gsfc.nasa.gov/12740



http://www.youtube.com/watch?v=x_Akn8fUBeQ
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astrophysical

TRANSIENTS:

a realm where it is a possibility to discover
new and entirely unexpected phenomena




Discovery examples, old and new ’)’

“Bell Burnell spotted an object that appeared to be
flickering every 1.3 seconds; this pattern repeated for
days on end...'It had to be some new kind of star, not
seen before, she said." (1967)

https:/www.space.com/38916-pulsar-discovery-little-green-men.html

“The first FRB, the Lorimer Burst, was discovered in
2007...its inferred distance was a million times greater _
[than pulsars], indicative of a new class of object”

https:/www.science.org/doi/10.1126/science.abj3043
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Characteristic time scale (days)

TDE: Tidal Disruption Events H

CC: Core-Collapse supernovaegy

la: thermonuclear supernovae.

SESN: Stripped-Envelope
supernovae

LBV: Luminous Blue Variables
LRN: Luminous Red Novae
CN: Classical Novae (MMRD)

ILRT: Intermediate Luminous
Red Transients

SS: Symbiotic Stars
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Most B The sub-minute parameter
Known space is largely unexplored.
Optical B Traditional imaging

Tra;;u;:  : J techniques require

il seconds or minutes for
exposure and readout.

credit:

Federica Bianco 3 ) )
12 atd Als AHs
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Fxpected to have second or sub-second”
variability:

Solar system

objects
(Nihei et al
2007)

Optical
counterpart

Accretion on

Blazars

ngepcigt (Raiteri et al o Eajfsgdlo
(Bruch 2021) 2021) (Chen, Ravi,




Solar System Objects

https:/solarstory.net/img/articles/big/kuiper-belt-illustration.jpg


https://solarstory.net/img/articles/big/kuiper-belt-illustration.jpg

Solar System Objects

The passage of Kuiper Belt objects in
front of stars causes subsecond

brightness decreases, with structure )

on the millisecond-level scale
Small Kuiper Belt-distance objects gl
produce characteristic diffraction
patterns (Nihei+ 2007) oW

-04 -0.2 0 0.2 04 04 -0.2 0 0.2 04 -04 0.2 0 02 04
t(s) t(s) t(s)

KU | per Belt (https:/solarstory.net/img/articles/big/kuiper-belt-illustration.jpg);
Occultation diffraction patterns at various
15 samplings (Nihei+ 2007)


https://solarstory.net/img/articles/big/kuiper-belt-illustration.jpg

Accretion on Compact Objects

https:/aasnova.org/wp-content/uploads/2018/11/fig1-L4.jpg
https:/i.pinimg.com/originals/2f/cc/e0/2fcce01591c7ab3714d583a6d8d3e360.gif



Accretion on Compact Objects

Well studied in high energy; limited in optical

Interesting rapid timescales in Cataclysmic
Variables from tens of minutes for eclipses
(Hardy+2016) to seconds for quasi-periodic
oscillations (Warner+2003)
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https:/aasnova.org/wp-content/uploads/2018/11/fig1-4.jpg

Eclipses (Hardy+2016)



Accretion on Compact Objects

200

Optical reprocessing in X-ray binaries, 5 s} MwM\W’ | w lh‘l\M ‘

timescales of ~seconds (Igl+2023)

5000 10000 15000 20000
Time (s) Since MJD 546946

X ray and IR variability of the black
hole x-ray transient GX 339-4
18 (Vincentelli+2018)



Blazars

https:/images.n
ewscientist.com
/wp-content/up
loads/2022/11/
21230533/SEl_
134642962 .jpg



https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg

Blazars

Blazars can show intra-night variability T
'sometimes of ~0.5 mag within several hours’ o T
(Bachev+2017) o o

Variability on time-scales < 5 hrs is likely — F5[F] " Al ]
caused by intrinsic energetic processes ] ™ ] gt |
involving emitting regions, likely jet u] Nt L e gl

substructures, with dimension less than ! I 2,;:23;6 .

about 107-3 pc (Raiteri+ 2021) ool

https:/images.newscientist.com/wp-content/upload
s/2022/11/21230533/SEl_134642962.jpg

Blazar variability from Belogradchik
Observatory (Bachev+2017)


https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg

Optical Counterpart to Fast Radio Bursts

https:/earthsky.
org/upl/2018/01
/fast-radio-burst
-Green-Bank-e1
515608387676,

P8
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Optical Counterpart to FRBs

The only known multiwavelength FRB

counterpart was an x-ray burst from the only irEEI R
Galactic FRB (Zhang 2024) TR SR S TR
an optical counterpart could arise from g e
) ) ) £§ =3 -
inverse compton scattering if the FRB 5T A
environment involves a neutron star with TEE A
an extremely strong magnetic field and an S
extremely fast spin, or an extr_emel\/ young Repeating FRB
supernova remnant surrounding the FRB (millisecond-timescale) light
source (Yang+ 2019) curves in radio (Zhang 2024)
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PROBLEM

Traditional optical
observational methods
cannot access sub-second
timescales.

Instrumentation built
specifically for astrophysical
observations on sub-second
timescales exists, but itis
rare, and often prohibitively
expensive.
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PROBLEM

Traditional optical
observational methods
cannot access sub-second
timescales.

Instrumentation built
specifically for astrophysical
observations on sub-second
timescales exists, but itis
rare, and often prohibitively
expensive.

SULUTION

Modified observing modes
with traditional cameras, like
trailing and
continuous-readout, can
enable observations as fast as
millisecond timescales on
most cameras.

Howell and Jacoby 1986
Bianco et al 2009




Unique observation mode with time
on the x axis, to allow view of
millisecond-level structure
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Biology. Jian Guan 6-28-2013




CCD % Charges

operating in

continuous-
readout here
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Star Streak and Corresponding Time Series

Summed streak flux (counts)

Streak image
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The Continuous-Readout Mode
/TF Survey

Our group collected images in
continuous-readout mode from 2022-2024
at the Palomar Telescope Samuel Oschin
robotic telescope (P48)

It was a special program of the Zwicky
Transient Facility (ZTF)

Bellm+ 2018

https://www.nsf.gov/news/mmg/
media/images/48night_h.jpg

.IIII===
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Sky map of
observed
fields.

Pink: training
data

Red: inference
data

Blue: observed

In this pilot work, | analysed a subset of our data:
43,320 star-streaks or 120 star-hours, from

68 observing runs
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Custom-built analysis tools

are necessary to analyze
continuous-readout mode
data
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Supervised learning
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https://data-flair.training/blogs/type
s-of-machine-learning-algorithms/




Supervised learning

S Supervised Learning 2
Training f
data It's Grapes
Model
Annotations
Prediction
These are .
grapes Testi ng https://data-flair.training/blogs/type
data s-of-machine-learning-algorithms/
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Neural networks

What they do: How they do it:

handle large amounts of data given examples of
input-target pairs, they are
“trained” to associate input
features with target labels

" consist of sequential layers of
. @ @ interconnected nodes, called

"neurons’ with trainable
weights

find subtle and rare patterns
within

W
single neuron, or perception, maps input to output Gurney 2018.

by a linear transformation and an activation function




Neural networks

What they do:

handle large amounts of data

find subtle and rare patterns
within

Loss

How they do it:

given examples of

input-target pairs, they are
“trained” to associate input
features with target labels

consist of sequential layers of
interconnected nodes, called
"neurons’ with trainable

weights

Gurney 2018.




Convolutional neural networks

What they do: How they do it:

use learnable convolutional
kernels as neurons

excel at recognizing patterns
in image-like data

!earn patterns in adjacent T~ e
input features , G5
backward /learning é‘j@ ‘ / -
Li+ 2021,
Long+ 2014.
38




My Sliding-Window CNN

Classifies each pixel as background, star streak,
brightening transient, dimming transient, or

cosmic ray "% CEsEEEES
. _ . [ | EEENEEEEERE
in the context of a square window of pixels L ghEEEERE
around it 55 EEEEEERE



My Sliding-Window CNN FHEE

.IIII===



| trained the CNN using five possible input phenomena:

Briihtenini Dimmini

Streak

Apple Grapes

Cosmic Ray Background

0 32 65 0 32 65 0

Time (ms) Time (ms)

32 65 0

Time (ms)

32 65



Streak, cosmic ray, and
background training datasets
were chosen from data

Streaks: One stamp was taken
from each of the ~ten
brightest streaks per image

Cosmic rays: contaminant of
early results

Background: taken from the
midpoint between streaks on
the spatial axis if the streaks
were separated by more than
25 pixels

Streak

'00.000..'00000..

Cosmic Ray Background

0 32
Time (ms)

65 0 32
Time (ms)

65 0 32 65
Time (ms)



Relative flux

Briihtenini Dimmini

o

32
Time (ms)

65 0

32
Time (ms)

65

Brightening and dimming transients were

implanted in streaks

(y—p)?

Fevent = F ((A — 1)6_ 2w? 1)

Ais the amplitude,

M is the event center pixel on the time
axis,

v is the pixel number corresponding to
the time axis,

w is the standard deviation of the
Gaussian model, or duration of the
event.



Brightening Training Implantation
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Building a training set

Two parameters varied for
brightening and dimming
events:

The duration w varied evenly in
the range 3-9 pixels (~10-30
ms)

The amplitude distribution was
biased towards lower intensities
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CNN Training

It happened!

The loss (the function thatis
minimized during training) is
shown over each training epoch.

The loss function used was
“categorical cross entropy.

Loss (Log scale)

Loss During CNN Training

—— Loss
—— Validation loss

0.5

0.4

A

0 20 40 60 80 100 120 140 160
Epoch

~ N A
L(y,9) = — 27;:1 y; log () ..=lll

A [ | EEEN
L(y, v) is the loss, EEE

yiis the true label for each class i | NEEEE
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How successful is the CNN at
categorizing pixels?
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Answer: the success rate
depends on the amplitude
and duration of the
transient
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Transient Detection Efficiency Heatmap
Transient Duration w (pixels)

3.0 4.0 5.0 6.0 7.0 8.0 9.0

) : -1.0

N retrieved
N _total

1.1 1.05 1.010.9950.99 095 0.9 0.85 0.8

Transient Multiplicative Amplitude A

100 80 60 40 30 20 15 13
_ o .

N

H
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H

[ |
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S0

Transient Multiplicative Amplitude A
100 80 6.0 40 30 20 15 13 11 105 1.010.9950.99 095 09 0.85 0.8

3.0

9.7

Transient Detection Efficiency Heatmap
Transient Duration w (pixels)
4.0 5.0 6.0 7.0 8.0

13.0 16.2 19.5 22.7 26.0
Transient Duration w (milliseconds)

9.0

29.2

-1.0

0.2

0.0

Very successful
atA<0.9

Failure as we
approach A =1
(no amplitude
change)

Very successful
atA> 1.1
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How can we use the CNN's
pixelwise categorizations to
categorize transient events?



Postprocessing steps

Aggregate pixelwise predictions into
potential transients

Reject recognizable artifacts and
contaminants

Extract light curves
Quantify noise and apply cutoffs

Extract transient parameters

Y

CNN output by the numbers:

BISEERE pixels

classified as belonging
to brightening
transients,

4,398,521 pixels
classified as belonging
to dimming transients




Before Tracking

3. Extract light

Image

14000

12000 1 iiitii 0000002 %000%000000
10000 4
8000 4
Shot Noise
6000 1 OF lux

curves

Flux (counts)

Postprocessing up to this
point leads to:

01 2 3 45¢6 7 8 9 9726 9780 9833

- brightening fime (Sec°”d5-) . Time (milliseconds)
With Tracking

transients,

238,259 dimming transients

14000
2 12000 A , AR 24202 V07 TRRRERY
\We let the center of the S0 th bt e o
aperture be the brightest PRl [E—
pixel for each time step, " 60001 | o
which we call "Tracking” 01 2 3 45¢6 7 8 9 9726 9780 9833

Time (seconds) Time (milliseconds)
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Shot noise

F
€Poisson = \/"é + (Nread)2

F is the pixel value in counts

G is the gain, which for these
observationsissetto G =6.2

N _read is the read noise, = 8.5
for our data

4. Quantify noise and apply cutoffs

Standard deviation of data

Calculated over 100 pixels on
either side of the transient,
excluding the 20 pixels (size of
the stamp) centered on the
transient

Leads to our SNR definition:;

max |FT|_ < Fstzeal\ >

SNR =

O Flux



4. Quantify noise and apply cutoffs

Signal to Noise Rratio of Transient Candidates

Moving Object Detection, SNR 65

Image

4000 +

«* 4+ 000000000000000000 ¢ - * Tttt

2000 A

Flux (counts)

| Shot Noise
OF lux b:4e %8

2 10 5 % 20 <0 €0 - 01 2 3 4 5 6 7 8 9 5510 5563 5616
SNR Time (seconds) Time (milliseconds)

SNR>25 indicates a moving object

55



O. Extract transient parameters

Gaussian Template Fitting Gaussian Fitting of Implantation
—(yi—m)? \ e Data
Ftransient,i = Fp ((A — 1) xe 2w’ + 1) Fit

Ais the amplitude,

M is the event center pixel on the
time axis,

Relative Flux

v is the pixel number
corresponding to the time axis,

w is the standard deviation of the s
. . 3050 3100 3150 3200 3250 3300 3350 3400 3450

Gaussian model, or duration of Time (ms)

the event




\What transient candidates

have | found?

S7



Dimming Transient

Candidates

Candidate ID 89360 287440 300741
Field ID 449 449 449
Observation Date 10/20/2022 | 10/20/2022 | 10/20/2022
Filter T T T
CCD ID and Quadrant 14; 1 13; 4 09; 2
Sobel Ratio 12.1 9.58 9.32
SNR 11.5 9.14 10.2
p (ms) 7089.99 6418.83 4476.88
w (ms) 10.18 22.96 22.42
Minimum Flux A (counts) 0.718 0.904 0.753
Baseline Flux Fy (counts) 1234.5 7151.1 1446.4

S8

Flux (counts)

Flux (counts)

Flux (counts)

Possible Transient # 89360

| Shot Noise
OFlux

%0%

0123456789
Time (seconds)

7230

7283 7336

Time (milliseconds)

Possible Transient # 287440

8000

~
(=3
=1
o

o
=3
=]
=)

1600

- =
N Y
=1 o
o (=}

1000

"o°oo°° o°
* o 0000,
| } | R 21 shot Noise &
L] OFlux %o
01 2 3 45 6 7 8 9 6536 6590 6643

Time (seconds)

Time (milliseconds)

Possible Transient # 300741

| Shot Noise
OFlux

0123456789
Time (seconds)

4543

4596 4650

Time (milliseconds)




Brightening Transient

Candidates

Candidate ID 107085 124163 145388
Field ID 686 640 640
Observation Date 10/20/2022 | 10/20/2022 | 10/20/2022
Filter g i g
CCD ID and quadrant 16; 2 09; 4 06; 3
Sobel Ratio 5.36 10.9 5.15
SNR Al 7.38 7.18
i (ms) 8229.57 3363.63 6522.56
w (ms) 3.72 7.10 2.13
Peak Flux (counts) A 1.155 1.124 1.073
Baseline Flux Fy (counts) 903.8 6232.8 1826.3

59

Flux (counts)

Flux (counts)

Flux (counts)

1000 A

o
=3
o

@
(=3
o

Possible Transient # 107085

Shot Noise 2
OFlux

0123458678 9
Time (seconds)

8393

8446 8500

Time (milliseconds)

Possible Transient # 124163

| Shot Noise

2 3456 7 8 9
Time (seconds)

0 1

3400

3453 3506

Time (milliseconds)

Possible Transient # 145388

20001

1800

1600

0123456789
Time (seconds)

6650

6703
Time (milliseconds)

6756




60

CONCLUSION + TAKEAWAYS

Fast optical transients:

Astronomers have barely
explored what in the sky varies
in less than a day

Transients are often extreme,
high-energy phenomena that
test fundamental physics

Surveying wide areas of sky to
find subsecond transients is
possible using continuous-
readout mode imaging

My analysis process:

| built a pipeline that retrieves
subsecond astrophysical
transient events in
continuous-readout mode data

Retrieved several candidate
events for further study
Possible Transient # 124163

—_ | °
3 70009 | hoe
2 1y

3 6500
3 y

5 6000
z

5500

01 2 3 456 7 8 9 3400 3453 3506
Time (seconds) Time (milliseconds)



Future work

Replace convolutional neural network with
transformer neural network

Transformer advantages:

Type of NN suited to sequential data (like a time series)
Can view whole streak, not just 20x20 pixel square
Can understand repetitive patterns of variability

Can view the relative behavior of multiple streaks to rule out some artifacts



. Aggregate pixelwise predictions into
potential transients

Brightening Dimming Combined
Image transient prediction transient prediction rediction RESUltS iﬂ!
- 605,259
| Max probability brightening
threshold transients,
Brightening Dimming Combined 520,787
transient prediction transient prediction rediction dlmmlng
transients,
Threshold
0.9999 10,530
COSMIC rays.

62
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2. Reject recognizable artifacts and contaminants

1. We remove transient candidates that are less than 5 pixels
these are likely cosmic rays or other artifacts of the image or of the CNN

CNN Output Real Image

238.0 238.0

218.0 218.0

198.0 198.0

2871.0 2881.0 2891.0 2871.0 2881.0 2891.0



2. Reject recognizable artifacts and contaminants

1. We remove transient candidates that are less than 5 pixels

2. \We remove transient candidates that are within 15 pixels of
the edges of the image
the CNN was not trained to interpret the edge of the image

CNN Output Real Image

2615.0; 2615.0;

2595.0 2595.0

2575.0°

0.0 10.0 -10.0 0.0 10.0



65

2. Reject recognizable artifacts and contaminants

1. We remove transient candidates that are less than 5 pixels
2. \We remove transient candidates that are within 15 pixels of
the edges of the image

3. We remove anything that doesn't have a pixel brightness of
at least 300 counts in the center 8 x 8 square of the postage

stamp
real transient events come from a streak (star/galaxy)

CNN Ou ti ut Rea ma‘e

Results in:

brightening
transients,

238,580
dimming
transients,

10,530
COSMIC rays.




2. Reject recognizable artifacts and contaminants

Cosmic Ray

Brightenin
Real transients expected to have smooth edges along the _

time axis
Cosmic rays have sharp edges

Ratio of edge sharpness calculated with Sobel—-Feldman Sobel+ 2022
edge detection filter

Virtanen+ 2020

Sobel
filter
in X

Sobel
filter

iny




2. Reject recognizable artifacts and contaminants

Sobel Ratio of Transient Candidates

Results in;

brightening
transients,

dimming
transients,
0l M

0 10 20 30 40 50 60 70 1 3, 3 38
Sobel Ratio COSMIC rays.

Transient candidates with sobel ratio <5 removed
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Brightening 4000

Very successful at:
Dimming 3000

Background

True Label

2000
Cosmic Ray
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BackgroundBrightening Dimming Cosmic Ray Streak
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Confusion Matrix .

Brightening Y 0.84 0.01

Dimming JEAUEY Ny n

Cosmic Ray

Very successful at:

Background
Cosmic ray

True Label

Streak JRVKSVEE] 0.031

Biggest source of confusion:

Background Brightening Dimming Cosmic Ray Streak

Dimming transients predicted tabel
Often confused for streaks
or brightening transients [
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Confusion Matrix

\ery successful at:

Background
Cosmic ray

Biggest source of confusion:

Dimming transients

Often confused for streaks
or brightening transients
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Recall some
brightening/dimming
transients that we
tested on are very
subtle...

Let’s investigate success
rate per A



1P(r)ecision and Recall Curves for Brightening and Dimming

Transients
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Precision and Recall Curves for More Significant Transients
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Double Streak Detection

Image
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30000 m

Secondary
cosmic rays

Vi
20000 m

10000 m

https://physic
sopenlab.org
/2016/01/10/
cosmic-muo
ns-decay/




