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AGENDA
▪ Overview of fast transients
▪ My data

▫ Continuous-readout mode survey data from the 
Zwicky Transient Facility

▪ Analysis methods
▫ Machine learning, image preprocessing and 

postprocessing
▪ Findings and results
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Questions & interruptions 
welcome!



TRANSIENTS:
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astrophysical



TRANSIENTS:
anything whose brightness changes on 
human-observable timescales
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astrophysical



Solar System Objects
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Credit: CAASTRO/Swinburne Astronomy Productions



TRANSIENTS:
often extreme phenomena that can test 
fundamental physics at a higher energy scale 
than we could ever see on Earth
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astrophysical
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Neutron Star Merger (artist’s interpretation)
https://svs.gsfc.nasa.gov/12740

http://www.youtube.com/watch?v=x_Akn8fUBeQ


TRANSIENTS:
a realm where it is a possibility to discover 
new and entirely unexpected phenomena
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astrophysical



Discovery examples, old and new
“Bell Burnell spotted an object that appeared to be 
flickering every 1.3 seconds; this pattern repeated for 
days on end…’It had to be some new kind of star, not 
seen before,’ she said.” (1967) 
https://www.space.com/38916-pulsar-discovery-little-green-men.html

“The first FRB, the Lorimer Burst, was discovered in 
2007…its inferred distance was a million times greater 
[than pulsars], indicative of a new class of object.”
https://www.science.org/doi/10.1126/science.abj30439



Most 
Known 
Optical 

Transients,
2024

credit: 
Federica Bianco
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The sub-minute parameter 
space is largely unexplored.
Traditional imaging  
techniques require 
seconds or minutes for 
exposure and readout.



Expected to have second or sub-second 
variability:

Accretion on 
compact 
objects

(Bruch 2021)

Solar system 
objects

(Nihei et al 
2007)

Blazars
(Raiteri et al 

2021)
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Optical 
counterpart 
to fast radio 

bursts
(Chen, Ravi, 

and Lu, 2020)



Solar System Objects
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https://solarstory.net/img/articles/big/kuiper-belt-illustration.jpg

https://solarstory.net/img/articles/big/kuiper-belt-illustration.jpg


Solar System Objects
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▪ The passage of Kuiper Belt objects in 
front of stars causes subsecond 
brightness decreases, with structure 
on the millisecond-level scale

▫ Small Kuiper Belt-distance objects 
produce characteristic diffraction 
patterns (Nihei+ 2007)

Kuiper Belt (https://solarstory.net/img/articles/big/kuiper-belt-illustration.jpg); 
Occultation diffraction patterns at various 
samplings (Nihei+ 2007)

https://solarstory.net/img/articles/big/kuiper-belt-illustration.jpg


Accretion on Compact Objects
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https://aasnova.org/wp-content/uploads/2018/11/fig1-4.jpg
https://i.pinimg.com/originals/2f/cc/e0/2fcce01591c7ab3714d583a6d8d3e360.gif



Accretion on Compact Objects
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▪ Well studied in high energy; limited in optical

▪ Interesting rapid timescales in Cataclysmic 
Variables from tens of minutes for eclipses 
(Hardy+2016) to seconds for quasi-periodic 
oscillations (Warner+2003)

https://aasnova.org/wp-content/uploads/2018/11/fig1-4.jpg

Eclipses (Hardy+2016)



Accretion on Compact Objects
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▪ Well studied in high energy; limited in optical

▪ Interesting rapid timescales in Cataclysmic 
Variables from tens of minutes for eclipses 
(Hardy+2016) to seconds for quasi-periodic 
oscillations (Warner+2003)

▪ Optical reprocessing in X-ray binaries, 
timescales of ~seconds (Igl+2023)

X ray and IR variability of the black 
hole x-ray transient GX 339-4 
(Vincentelli+2018)



Blazars
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https://images.n
ewscientist.com
/wp-content/up
loads/2022/11/
21230533/SEI_
134642962.jpg

https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg


Blazars
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▪ Blazars can show intra-night variability 
‘sometimes of ∼0.5 mag within several hours’ 
(Bachev+2017)

▫ Variability on time-scales < 5 hrs is likely 
caused by intrinsic energetic processes 
involving emitting regions, likely jet 
substructures, with dimension less than 
about 10^-3 pc (Raiteri+ 2021) https://images.newscientist.com/wp-content/upload

s/2022/11/21230533/SEI_134642962.jpg

Blazar variability from Belogradchik 
Observatory (Bachev+2017)

https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg
https://images.newscientist.com/wp-content/uploads/2022/11/21230533/SEI_134642962.jpg


Optical Counterpart to Fast Radio Bursts

21

https://earthsky.
org/upl/2018/01
/fast-radio-burst
-Green-Bank-e1
515608387676.j
pg



Optical Counterpart to FRBs
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▪ The only known multiwavelength FRB 
counterpart was an x-ray burst from the only 
Galactic FRB (Zhang 2024)

▫ an optical counterpart could arise from 
inverse compton scattering if the FRB 
environment involves a neutron star with 
an extremely strong magnetic field and an 
extremely fast spin, or an extremely young 
supernova remnant surrounding the FRB 
source (Yang+ 2019)

Repeating FRB 
(millisecond-timescale) light 
curves in radio (Zhang 2024)



PROBLEM
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▪ Traditional optical 
observational methods 
cannot access sub-second 
timescales.

▪ Instrumentation built 
specifically for astrophysical 
observations on sub-second 
timescales exists, but it is 
rare, and often prohibitively 
expensive.



PROBLEM SOLUTION
▪ Traditional optical 

observational methods 
cannot access sub-second 
timescales.

▪ Instrumentation built 
specifically for astrophysical 
observations on sub-second 
timescales exists, but it is 
rare, and often prohibitively 
expensive.
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▪ Modified observing modes 
with traditional cameras, like 
trailing and 
continuous-readout, can 
enable observations as fast as 
millisecond timescales on 
most cameras.

Howell and Jacoby 1986
Bianco et al 2009
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Unique observation mode with time  
on the x axis, to allow view of 

millisecond-level structure

“CONTINUOUS-READOUT MODE” TIME 
SERIES DATA



How a CCD 
works
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CCD Detectors in High-Resolution 
Biology. Jian Guan 6-28-2013



Charges 
read out 

here

CCD 
operating in 
continuous- 

readout 
mode
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Beginning of continuous-readout mode (CRM)      Mid-CRM image
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The Continuous-Readout Mode 
ZTF Survey
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▪ Our group collected images in 
continuous-readout mode from 2022-2024 
at the Palomar Telescope Samuel Oschin 
robotic telescope (P48) 

▪ It was a special program of the Zwicky 
Transient Facility (ZTF) 

Bellm+ 2018
https://www.nsf.gov/news/mmg/

media/images/48night_h.jpg



371 GB
of data, containing

600x/second
sampling rate

525 star − hours
collected as of 10-26-2022
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In this pilot work, I analysed a subset of our data: 
43,320 star-streaks or 120 star−hours, from 
68 observing runs
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Sky map of 
observed 
fields. 
Pink: training 
data
Red: inference 
data 
Blue: observed



Custom-built analysis tools 
are necessary to analyze 
continuous-readout mode 
data
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Supervised learning
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https://data-flair.training/blogs/type
s-of-machine-learning-algorithms/

Apple Apple

Apple

GrapesGrapes



Supervised learning
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https://data-flair.training/blogs/type
s-of-machine-learning-algorithms/

Training 
data

Testing 
data



Neural networks
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What they do:

▪ handle large amounts of data

▪ find subtle and rare patterns 
within

How they do it:

▪ given examples of 
input-target pairs, they are 
“trained” to associate input 
features with target labels

▪ consist of sequential layers of 
interconnected nodes, called 
“neurons”, with trainable 
weights

Gurney 2018.A single neuron, or perception, maps input to output 
by a linear transformation and an activation function



Neural networks
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What they do:

▪ handle large amounts of data

▪ find subtle and rare patterns 
within

How they do it:

▪ given examples of 
input-target pairs, they are 
“trained” to associate input 
features with target labels

▪ consist of sequential layers of 
interconnected nodes, called 
“neurons”, with trainable 
weights

Gurney 2018.



Convolutional neural networks
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What they do:

▪ excel at recognizing patterns 
in image-like data

▪ learn patterns in adjacent 
input features

How they do it:

▪ use learnable convolutional 
kernels as neurons

Li+ 2021.
Long+ 2014.



My Sliding-Window CNN

▪ Classifies each pixel as background, star streak, 
brightening transient, dimming transient, or 
cosmic ray

▪ in the context of a square window of pixels 
around it 39



My Sliding-Window CNN

40



Five training classes
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What they do:

▪ excel at recognizing patterns 
in image-like data

▪ learn patterns in adjacent 
input features

How they do it:

▪ use learnable convolutional 
kernels as neurons

I trained the CNN using five possible input phenomena:
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Streak, cosmic ray, and 
background training datasets 
were chosen from data

Streaks: One stamp was taken 
from each of the ~ten 
brightest streaks per image

Cosmic rays: contaminant of 
early results

Background: taken from the 
midpoint between streaks on 
the spatial axis if the streaks 
were separated by more than 
25 pixels

9,715 events 600 events        24,382 events
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 9,715 events  9,715 events
Brightening and dimming transients were 

implanted in streaks

▪ A is the amplitude, 

▪ μ is the event center pixel on the time 
axis, 

▪ y is the pixel number corresponding to 
the time axis, 

▪ w is the standard deviation of the 
Gaussian model, or duration of the 
event. 
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Building a training set
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Two parameters varied for 
brightening and dimming 
events:

The duration w varied evenly in 
the range 3-9 pixels (∼10−30 
ms) 

The amplitude distribution was 
biased towards lower intensities

▪

sigma=3 sigma=9



CNN Training
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It happened!

The loss  (the function that is 
minimized during training) is 
shown over each training epoch.

The loss function used was 
“categorical cross entropy.”

L(y, yˆ) is the loss, 

yi is the true label for each class i

yˆi is the predicted probability for each class



How successful is the CNN at 
categorizing pixels?

47
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Answer: the success rate 
depends on the amplitude 
and duration of the 
transient

sigma=3 sigma=9
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N_retrieved
N_total
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Very successful 
at A < 0.9

Failure as we 
approach A = 1 
(no amplitude 
change)

Very successful 
at A > 1.1



How can we use the CNN’s 
pixelwise categorizations to 
categorize transient events?
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Postprocessing steps
1. Aggregate pixelwise predictions into 

potential transients

2. Reject recognizable artifacts and 
contaminants

3. Extract light curves

4. Quantify noise and apply cutoffs

5. Extract transient parameters 

CNN output by the numbers:

▪ 6,399,234 pixels 
classified as belonging 
to brightening 
transients,

▪ 4,398,521 pixels 
classified as belonging 
to dimming transients
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Postprocessing up to this 
point leads to:

67,796 brightening 
transients,

238,259 dimming transients

We let the center of the 
aperture be the brightest 
pixel for each time step, 
which we call “Tracking.”

3. Extract light 
curves
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Shot noise

F is the pixel value in counts
G is the gain, which for these 
observations is set to G = 6.2
N_read is the read noise, = 8.5 
for our data

4. Quantify noise and apply cutoffs
Standard deviation of data
Calculated over 100 pixels on 
either side of the transient, 
excluding the 20 pixels (size of 
the stamp) centered on the 
transient

Leads to our SNR definition:
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4. Quantify noise and apply cutoffs

SNR>25 indicates a moving object
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▪ A is the amplitude, 
▪ μ is the event center pixel on the 

time axis, 
▪ y is the pixel number 

corresponding to the time axis, 
▪ w is the standard deviation of the 

Gaussian model, or duration of 
the event

5. Extract transient parameters
Gaussian Template Fitting



What transient candidates 
have I found?

57



58

Dimming Transient 
Candidates
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Brightening Transient 
Candidates



CONCLUSION + TAKEAWAYS
My analysis process:

▪ I built a pipeline that retrieves 
subsecond astrophysical 
transient events in 
continuous-readout mode data

▪ Retrieved several candidate 
events for further study
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Fast optical transients:
▪ Astronomers have barely 

explored what in the sky varies 
in less than a day

▪ Transients are often extreme, 
high-energy phenomena that 
test fundamental physics

▪ Surveying wide areas of sky to 
find subsecond transients is 
possible using continuous- 
readout mode imaging



Future work 

Replace convolutional neural network with 
transformer neural network

Transformer advantages:
▪ Type of NN suited to sequential data (like a time series)
▪ Can view whole streak, not just 20x20 pixel square
▪ Can understand repetitive patterns of variability
▪ Can view the relative behavior of multiple streaks to rule out some artifacts
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1. Aggregate pixelwise predictions into 
potential transients

Results in:

605,259 
brightening 
transients,

520,787 
dimming 
transients,

10,530 
cosmic rays.

Max probability 
threshold

Threshold 
0.9999
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1. We remove transient candidates that are less than 5 pixels 
these are likely cosmic rays or other artifacts of the image or of the CNN

2. Reject recognizable artifacts and contaminants
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1. We remove transient candidates that are less than 5 pixels 
2. We remove transient candidates that are within 15 pixels of 
the edges of the image 

the CNN was not trained to interpret the edge of the image

2. Reject recognizable artifacts and contaminants
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1. We remove transient candidates that are less than 5 pixels 
2. We remove transient candidates that are within 15 pixels of 
the edges of the image 
3. We remove anything that doesn’t have a pixel brightness of 
at least 300 counts in the center 8 × 8 square of the postage 
stamp 

real transient events come from a streak (star/galaxy)

Results in:

69,090 
brightening 
transients,

238,580 
dimming 
transients,

10,530 
cosmic rays.

2. Reject recognizable artifacts and contaminants
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▪ Real transients expected to have smooth edges along the 
time axis

▪ Cosmic rays have sharp edges
▪ Ratio of edge sharpness calculated with Sobel–Feldman 

edge detection filter

2. Reject recognizable artifacts and contaminants

Sobel+ 2022
Virtanen+ 2020

Sobel 
filter 
in x

Sobel 
filter 
in y
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Transient candidates with sobel ratio <5 removed

Results in:

67,796 
brightening 
transients,

238,259 
dimming 
transients,

13,338 
cosmic rays.

2. Reject recognizable artifacts and contaminants



Confusion Matrix
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Very successful at:

▪ Background



Confusion Matrix
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Very successful at:

▪ Background
▪ Cosmic ray

Biggest source of confusion:

▪ Dimming transients
▫ Often confused for streaks 

or brightening transients



Confusion Matrix
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Very successful at:

▪ Background
▪ Cosmic ray

Biggest source of confusion:

▪ Dimming transients
▫ Often confused for streaks 

or brightening transients

Recall some 
brightening/dimming 
transients that we 
tested on are very 
subtle…

Let’s investigate success 
rate per A



Precision recall backup slide
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Double Streak Contamination
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https://physic
sopenlab.org
/2016/01/10/
cosmic-muo

ns-decay/


